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ABSTRACT

We report our experiences of developing, deploying, and evalu-

ating MLoc, a smartphone-based indoor localization system for

malls. MLoc uses Bluetooth Low Energy RSSI and geomagnetic

field strength as fingerprints. We develop efficient approaches for

large-scale, outsourced training data collection. We also design

robust online algorithms for localizing and tracking users’ posi-

tions in complex malls. Since 2018, MLoc has been deployed in 7

cities in China, and used by more than 1 million customers. We

conduct extensive evaluations at 35 malls in 7 cities, covering 152K

𝑚2 mall areas with a total walking distance of 215 km (1,100 km

training data).MLoc yields a median location tracking error of 2.4m.

We further characterize the behaviors ofMLoc’s customers (472K

users visiting 12 malls), and demonstrate that MLoc is a promising

marketing platform through a promotion event. The e-coupons

delivered through MLoc yield an overall conversion rate of 22%.

To facilitate future research on mobile sensing and indoor localiza-

tion, we have released a large dataset (43 GB at the time when this

paper was published) that contains IMU, BLE, GMF readings, and

the localization ground truth collected by trained testers from 37

shopping malls.

CCS CONCEPTS

• Information systems→ Location based services; Sensor net-

works; Global positioning systems; •Networks→ Location based

services.
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1 INTRODUCTION

Indoor localization has been extensively researched in the past two

decades. A Google Scholar search using “indoor localization” gives

more than 40,000 results. In sharp contrast, large-scale deployment

of indoor localization systems is far lagging behind. There are very
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limited news articles on commercial indoor localization deploy-

ments [8, 31, 32, 44, 45, 47], among which few offer deep insights

into their deployment experiences.

This paper fills the above gap by reporting our experiences

and findings of developing, deploying, and evaluating MLoc, a

smartphone-based localization system for indoor malls (commer-

cial complex buildings) typically with tens or hundreds of retail

stores.MLoc helps customers find paths to stores (e.g., how to reach

the nearest Starbucks) by providing accurate, easy-to-use localiza-

tion and store-level navigation. Developing MLoc is very different

from building an indoor localization prototype in the lab. It faces

unique challenges, involves additional constraints, and requires judi-

cious decisions considering numerous technical and non-technical

factors, as elaborated below.

From the infrastructural perspective, an important decision

is to select the appropriate physical signals as localization fin-

gerprints. Given the plethora of research on WiFi-based localiza-

tion [11, 12, 38, 56, 60] and the ubiquitous WiFi deployment in

today’s malls, we naturally sought to leverage WiFi as location

fingerprints. However, we eventually rejected this design. We find

that around half of our customers use iPhone, which does not offer

public APIs for querying WiFi APs’ RSSI. Even on Android devices,

two unexpected factors render WiFi-based localization less feasi-

ble: many deeply customized Android systems have very low WiFi

scanning frequency (e.g., every 20s), and commercial WiFi APs

may periodically change MAC addresses for security consideration.

MLoc instead uses the conventional Bluetooth Low Energy (BLE)

RSSI and geomagnetic field (GMF) strength as the location finger-

prints. BLE requires a light infrastructure consisting of cheap, small,

battery-powered beacons, whereas GMF is infrastructure-free. We

find their synergy can lead to an accuracy adequate for store-level

navigation.

From the data’s perspective, following the common wisdom

in literature, MLoc adopts a landmark-based outsourcing approach

(i.e., hiring human collectors to survey a few predefined landmarks)

to collect BLE/GMF fingerprints and the ground truth location

data. However, we note that the hired collectors are quite distinct

from the knowledgeable collectors in academic research – they can

easily miss certain landmarks, but meanwhile would like to move

existing landmarks or even suggest adding new ones. To this end,

we enhance the common approach by strategically restricting the

landmark visiting paths; in addition, we respect collectors’ on-site

opinions by allowing them to improve the predefined landmarks

(calculated based on imperfect floor plan information) through a

dedicated, user-friendly GUI (§2.1).

From the algorithmic perspective, we choose not to build

MLoc from scratch given the rich literature. Our main challenge

thus lies in how to pick the suitable building blocks from existing

works. We find that many sophisticated algorithms in the literature



ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Yuming Hu, et al.

aim at dealing with challenging cases in various indoor environ-

ments. In our domain of in-mall localization, surprisingly perhaps,

we observe only several generic challenging areas (e.g., atrium, cor-

ridor dead ends, corridor connectors, and elevators) despite the

malls’ complex layouts, based on extensive field studies at 35 malls

with different scales. Such an observation greatly simplifies our

algorithm design. Encouragingly, we find that classical algorithms

can be enhanced by simple yet strategic customizations such as

fingerprint preprocessing, weight adjustment, and lightweight AI

to tackle the challenging areas (§2.2–§2.5).

While we cannot claim the optimality of our solution, MLoc

does achieve its design goal in a pragmatic sense. Since its debut

in 2018, MLoc has been used by more than 1 million customers.

Over more than one year, we conduct extensive evaluations at 35

malls in 7 cities in China, covering 152K𝑚2 localization areas.1 Our

evaluations consist of 4.3K paths with a total walking distance of

215 km (a path denotes a trajectory from the navigation source to

the destination; its median length is around 45m). The underlying

training data consists of 1,110 km walking, involving 21K BLE

beacons and 244K landmarks. We find thatMLoc yields a median

location tracking error of 2.4m (10-th and 90-th percentile: 0.8m

and 7.3m). Nevertheless, we do observe several limitations ofMLoc,

such as a long tail of high errors and imperfect floor detection. We

find that many of these errors are attributed to non-algorithmic

factors, such as beacon failures, poor device capability (e.g., some

smartphone vendors throttle the BLE scanning frequency to save

energy), and even poor Internet connectivity hindering the client-

edge communication (§3).

Last but not least, we alsomake observations from the business’s

perspective A key reason for the sharp disparity between the

plethora of research and little commercial deployment of indoor

localization is a lack of incentives and/or business models. To this

end, we characterize the behaviors of MLoc’s customers, based on

472K users’ data collected from 12 malls over one year. The results

suggest thatMLoc is overall effective: 95% of the navigations ended

at locations that are 20m within the destination storefronts. We also

find that whileMLoc can help many users find their destinations

quickly, in at least 20% of the navigations, users spend more than 2

minutes usingMLoc. Such an in-app session length during shop-

ping time offers considerable business opportunities. For example,

we demonstrate that MLoc is a promising marketing platform that

can distribute targeted advertisements based on customers’ real-

time location. Through a sales event co-organized by MLoc and a

large mall, we observe an ad conversion rate of 22%, significantly

higher than those of online advertising [5] (§4).

Ethical Concern. All the analyses conducted in this paper comply

with the agreement established betweenMLoc and its customers.

No personally identifiable information (PII) was collected or used in

this study. We never (and are unable to) correlate a user’s location

with his/her true identity.

Dataset release. To facilitate future research on mobile sensing

and indoor localization, we have released a large dataset (43 GB

at the time when this paper was published) that contains IMU,

1MLoc only serves malls’ shared areas (e.g., corridors, atrium, stairs, rest areas). It
does not cover areas inside stores (i.e., gross leasable areas, GLA) due to many stores’
privacy policies.

Figure 1: BLE Beacon on ceiling.

BLE, GMF readings, and the localization ground truth collected by

trained testers from 37 shopping malls. The dataset (including its

detailed data format) can be downloaded at:

https://kumius.github.io/MLoc/

2 THE MLOC SYSTEM DESIGN

Not surprisingly, MLoc consists of two phases: offline training,

where (fingerprint, location) pairs are collected to build a localiza-

tion model, and online inference, where a user’ smartphone collects

fingerprints, uploads them to the edge, and obtains the location

and/or navigation guidance in real time.

Fingerprint Selection. A wide range of physical signals (e.g.,

acoustics [43, 62], radio signals [10, 11, 14, 24, 25, 49, 57], visible

light [26, 59], magnetic field [42, 63], and camera images [54]) can be

leveraged as localization fingerprints. MLoc leverages two sources

as fingerprints: signal strength of infrastructural Bluetooth Low

Energy (BLE) beacons and geomagnetic field (GMF) strength in X,

Y, Z dimensions. We make this design decision due to three main

reasons.

• Both fingerprints are accessible on commodity devices (Android

and iOS smartphones) through standard SDKs. Recall from §1 that

we reject WiFi-based localization due to several practical difficul-

ties: a lack of APIs on iOS, low scanning frequencies on deeply

customized Android devices, and MAC address randomization ob-

served on commodity APs.

• The management teams of all the shopping malls we approached

only allow us to deploy small-sized, battery-powered hardware.

Installation of additional power and networking cables is forbidden

due to aesthetic considerations.

• The judicious combination of BLE and GMF can yield the desired

accuracy (Figure 6, §3). We surveyed more than 4K stores in 12

malls, and find that only 3% of the storefronts have a width less

than 5m. Therefore, a localization accuracy of ∼5m is sufficient for

store-level localization.

2.1 Offline Training Data Collection

BLE Beacon Deployment. Due to aesthetic considerations, we

adopt small-sized, battery-powered beacons. Each beacon costs

around 5 USD and has a small form factor of 59 mm × 59 mm × 18

mm. It is equipped with a 2,400 mAh battery. The default broadcast

interval is 200 ms unless otherwise stated.

According to our agreements with the malls, we are only allowed

to deploy the beacons in shared areas (as opposed to the gross

leasable areas, GLA) in a mall. We mount the beacons on the ceiling
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Figure 2: An atrium (beacons in red circles).

Figure 3: Landmarks and N-shaped path.

of the corridor (Figure 1) or on the surrounding edges in atrium

(open space) areas (Figure 2). The typical distance between two

beacons is from 10 to 15m, and the typical beacon density is from 2

to 5 per 1000𝑚2, depending on the specific layout of the area. For

the areas where localization is challenging (e.g., atrium, corridor,

and elevators, see the remainder of this section), we reduce the

inter-beacon distance to 6m to ensure good localization accuracy.

Following the above guidelines, we deployed MLoc in 35 shopping

malls across 7 cities in China.

Once deployed,MLoc incurs small maintenance overheads, which

mostly come from replacing fallen beacons due to glue failure. This

is handled by shopping malls’ management teams. In the long run,

another major type of maintenance is battery replacement, which is

detailed in §3. Our deployment experience suggests the following:

� Guideline 1. For store-level localization, a desirable BLE bea-

con density is every 5 to 15 meters. Compared to corridors, more dense

beacons are needed in atrium areas where BLE fingerprints are more

likely to cause confusion.

BLE/GMF Training Data Collection. MLoc adopts an out-

sourcing approach (i.e., hiring paid human workers) for collecting

BLE/GMF fingerprints and the ground truth location data. This is a

labor-intensive task: it takes on average 20 seconds for the collector

to survey a location. A typical mall in a large city has an area of

50K to 100K𝑚2, withMLoc’s coverage (all shared areas in the mall

such as entrances, corridors, atrium, stairs, rest areas) accounting

for ∼10% of the total area. It thus takes 28 to 56 hours for a human

collector to survey, say, all 1m×1m grids in a mall.

To reduce the data collection overhead, we only ask collectors to

visit a small subset of locations called landmarks. Given the large

scale of data collection, it is infeasible to ask collectors to identify

A

B

B’
p1

p2 p3
q1

q2
q3

Figure 4: Trajectory correction.

the landmarks. Instead, as shown in Figure 3, a collector performs

the job using a custom mobile app developed by us, which uses

the floor plan to automatically generate the vertices of the stores’

bounding boxes as landmarks. The collector will need to visit each

landmark and collect the corresponding fingerprint. Each mall only

has 500 to 1,000 landmarks, thus reducing the collector’s workload

by 10× compared to the “exhaustive traversal” approach.

We notice two major issues in the pilot deployment. First, many

collectors do not visit the landmarks in an efficient manner; they

oftentimes miss landmarks and need to go back, thus increasing

the travel distance. Second, many collectors suggest that there are

more visually recognizable landmarks such as pillars and doors than

those automatically generated based on the floor plan, which may

not contain complete and detailed environmental information. We

thus improve the data collection design accordingly as follows. First,

the data collection app generates not only the landmarks, but also

a suggested path for the collector. We use an N-shape path for each

corridor (Figure 3), and a circular path for each atrium. Second, the

app also allows collectors to add or modify the landmarks through

a GUI. In this way, more visually recognizable landmarks could

be identified in a “crowd-sourced” manner and incorporated into

future collections. After these improvements, the vast majority of

the collectors reported much better data collection experiences.

Data Processing. The data collected by human workers is pro-

cessed in three steps.

(i) Validation.We use several heuristics (e.g., footstep counting,

dead reckoning, see §2.3) to validate the worker’s walking distance

and direction, to ensure that the worker has indeed visited all the

landmarks. A cross-collector fingerprint check is also performed to

identify outliers.

(ii) Dead-reckoning Trajectory Correction.When the collector is

walking from Landmark A to B, the collection app uses dead reckon-

ing (§2.3) to track the collector’s trajectory. Meanwhile, fingerprints

are also collected as the collector is walking, e.g., at location 𝑝1, 𝑝2,
and 𝑝3 illustrated in Figure 4. These fingerprints will be used in the

interpolation step to be described next. Due to the dead reckoning

errors, the tracked trajectory 𝐴 → 𝐵′ may differ from the actual

trajectory 𝐴 → 𝐵. We thus calculate a transformation 𝑇 , which
consists of a vector rotation followed by linear scaling, that trans-

forms vector
−−→
𝐴𝐵′ to −→

𝐴𝐵. We then apply 𝑇 to all the on-trajectory

locations. As shown in Figure 4, {𝑝𝑖 } is transformed to {𝑞𝑖 } that is
closer to the actual trajectory.

(iii) Grid Interpolation.We divide the entire mall’s localization

areas into equal-sized grids (1m × 1m for BLE and 0.1m × 0.1m

for GMF). Next, using the locations with (corrected) fingerprints

as input vertices (e.g., 𝐴, 𝑞1, 𝑞2, 𝑞3, and 𝐵 in Figure 4), we apply
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Delaunay Triangulation [27] to generate a mesh of triangles. For

each grid, its fingerprint is then calculated by performing linear

interpolation of the three vertices of the triangle that the center of

the grid belongs to. This results in a grid map of fingerprints that

will be used for online localization and tracking.

� Guideline 2. In complex malls, it is feasible to survey a small

number of landmarks and use them to generate a fingerprint grid map.

To reduce the data collection overhead, not only the landmarks but

also their visiting paths should be pre-generated. It is yet beneficial

to allow on-site collectors to improve landmark selections through

user-friendly GUIs.

2.2 Online Initial Positioning

We now describe howMLoc provides online localization and track-

ing services to end users. There are two stages involved: initial

positioning (this subsection) that finds a user’s initial location, and

location tracking (§2.3) that tracks and refines the location as the

user is walking.

The initial positioning includes three steps: (1) Mall (building)

Identification, which is done by examining the received BLE beacon

IDs; (2) Floor Estimation, which is described in §2.4; and (3) Location

Estimation, which we detail next.

The initial positioning stage only uses BLE fingerprints because

GMF is much noisier (Figure 6). MLoc applies the k-nearest neigh-

bors (kNN) to find the 𝑘 grids 𝑔1, .., 𝑔𝑘 whose BLE fingerprints

𝑓1, ..., 𝑓𝑘 are closest to (in L2 distance) the fingerprint 𝑓 collected

at the current location. We set 𝑘=20 based on our controlled ex-

periments in multiple malls. We exclude from fingerprints the BLE

beacons whose signal strengths are weaker than a threshold (em-

pirically set to -95dB), because weaker signals are less sensitive

to distance changes and introduce more noises. In addition, we

observe that the fingerprint readings across different smartphone

brands/models oftentimes exhibit disparities (i.e.,Model A’s RSSI

reading is always slightly higher than Model B). To overcome this

issue, MLoc adopts a simple yet effective method: it normalizes

the BLE fingerprints by subtracting from each RSSI reading the

average RSSI across all the samples of all the beacons collected by

the same device. Given that a device can sense a large number of

beacons with diverse RSSI readings, their average RSSI provides a

good per-device “baseline”. The normalization is applied to both

the training and testing fingerprints. After the above normalization,

MLoc estimates the user’s location (grid) 𝑔 as a weighted sum of

𝑔1, ..., 𝑔𝑘 , i.e., 𝑔 =
∑𝑘
𝑖=1𝑤𝑖𝑔𝑖 where 𝑤𝑖 is inversely proportional to

the L2 distance between (normalized) 𝑓𝑖 and 𝑓 , and
∑𝑘
𝑖=1𝑤𝑖 = 1.

Through extensive field experiments, we identify two types of

challenging areas. The first is illustrated in Figure 5(a) where the

user is near the connection point between a narrow corridor and a

wide corridor (or an open area). In this case, there are more nearby

grids in the wide corridor than in the narrow corridor. The weighted

sum of the k-nearest neighbors will thus be biased towards the wide

corridor. The second case is shown in Figure 5(b) where the user is

at the dead end of a corridor. In this case, the weighted sum of the

nearest neighbors will be shifted to the open end. Note that these

two types are generic and representative, observed in almost all the

malls (35) we have studied. For identifying the dead end areas, we

User’s location Nearby grid 

(a) Connector between
narrow and wide corridor (b) Dead end 

Figure 5: Two types of challenging areas identified in malls.

manually mark them based on the mall’s (known) floor map. The

incurred overhead is small because this is a one-time effort.

Both cases in Figure 5 are attributed to the non-uniform distri-

bution of the grids imposed by the mall’s layout. We thus augment

the localization algorithm using the floor layout information. To

address the case in Figure 5(a), we assign an additional weight𝑤 ′
𝑖 to

each grid 𝑔𝑖 to account for the nearby floor layout. We set𝑤 ′
𝑖 to be

inversely proportional to the width of the corridor or the diameter

of the open space, which is computed offline based on the floor

plan. The localization result is thus 𝑔 =
∑𝑘
𝑖=1𝑤𝑖𝑤

′
𝑖𝑔𝑖 . To handle the

“dead end” scenario in Figure 5(b), we use a small 𝑘 (the number

of nearest neighbors) to minimize the impact of floor layout when

60% of the neighbors are in predefined dead end areas. Since the

number of dead ends in each mall is limited, we manually set 𝑘 (e.g.,

𝑘=10) for each affected area.

� Guideline 3. Simple algorithms (kNN) can give an initial loca-

tion estimation with reasonable accuracy. Preprocessing is important:

fingerprints should be normalized to account for the device hetero-

geneity; floor layout information can also be leveraged to improve

the accuracy. Most of the above computation can be done offline to

minimize the runtime overhead.

2.3 Online Location Tracking

After the initial positioning, MLoc will keep tracking the user’s

movement and updating his/her location in real time.

Dead Reckoning (DR) is a widely used navigation technique

that calculates an object’s position using its base position and mea-

surements of the object’s speed and heading [23]. InMLoc, the base

position is provided by the initial positioning stage (§2.2), and DR

is performed on a per-footstep basis. Our DR solution is assembled

from four building blocks developed in the literature. (1) We use

the technique in [37] for footstep detection. (2) We use the algo-

rithm in [53] to calculate the footstep length through the empirical

formula 𝛾 4
√
𝑎𝑐𝑐𝑚𝑎𝑥 − 𝑎𝑐𝑐𝑚𝑖𝑛 where 𝑎𝑐𝑐𝑚𝑖𝑛 and 𝑎𝑐𝑐𝑚𝑎𝑥 are the min-

imum and maximum acceleration in Z axis over a detection window,

respectively. Initially 𝛾 is empirically set to 0.4. (3) We use the tech-

nique in [38] to correct the footstep length estimation (𝛾 ) based on

the floor plan (so we know the walking distance) and the number of

footsteps. (4)MLoc further leverages prior work [35, 39] for heading

estimation using the accelerometer, gyroscope, magnetometer, and

compass.

Particle-filtering based Tracking.MLoc employs Particle Fil-

tering (PF [16]) as the basis for location tracking. PF uses a set of

particles to model the posterior distribution of a stochastic process

(localizing the user in our case), given the noisy observations (initial
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positioning and error-prone sensor reading in our case). We next

describe how MLoc instantiates the generic PF framework.

• Step �: MLoc performs the initial positioning. It initializes the

observation 𝑜 , the currently tracked location, to the initial position-

ing result.MLoc then generates 𝑛 particles 𝑝1, ..., 𝑝𝑛 following a 2D

Gaussian distribution centering at 𝑜 . 𝑛 is set to 2K to 5K depending

on the floor size. Next, go to �.

• Step �: MLoc performs weighted sampling (with replacement)

of 𝜂 · 𝑛 particles from the existing pool of particles, and generates

(1 − 𝜂)𝑛 new particles forming a 2D Gaussian at 𝑜 . 𝜂 is set to 95%.

This is called the resampling step in PF.

• Step�: NowMLoc starts tracking the user footstep by footstep. In

each footstep, DR produces a vector−→𝑣 indicating the user’s footstep

direction and distance.MLoc updates the observation 𝑜 ← 𝑜 + −→𝑣 ,
as well as each particle 𝑝𝑖 ← 𝑝𝑖 + −→𝑣 .
• Step�: For 𝑜 and each 𝑝𝑖 ,MLocmaintains a trajectory of the most

recent𝑚 footsteps’ fingerprints (BLE and GMF features), denoted as

𝑡 𝑗 (𝑜) = {𝑓 𝑜1 , ..., 𝑓 𝑜𝑚} and 𝑡 𝑗 (𝑝𝑖 ) = {𝑓 𝑝𝑖1 , ..., 𝑓
𝑝𝑖
𝑚 } respectively. 𝑡 𝑗 (𝑜) is

collected on the user’s device, and 𝑡 𝑗 (𝑝𝑖 ) is retrieved from the grid

map (§2.1) stored on the edge using 𝑝𝑖 ’s trajectory.MLoc applies

Dynamic Time Warping (DTW) [36] to calculate the similarity

between 𝑡 𝑗 (𝑜) and 𝑡 𝑗 (𝑝𝑖 ), and uses the similarity value as theweight

of 𝑝𝑖 .

• Step �: The particles’ weights are normalized to make their sum

be 1. The observation 𝑜 (i.e., the estimated location) is then updated

as the (weighted) centroid of all the particles.

• Step �: Go to � to process the next footstep. Ideally, as more

and more footsteps are observed, the centroid of the particles will

converge to the user’s true location. However, due to errors of

initial positioning and/or DR, the particles may diverge instead of

converging. If the mean weight of the top 10% particles (ranked by

their weights) is less than 0.25, we reset the entire PF algorithm by

returning to �.

In practice, we find that there is no need to invoke �, �, and �

for every footstep, given that a typical footstep length is only 50 to

70 cm. Instead, performing the above steps every 4 footsteps yields

almost no localization accuracy loss. In addition, the trajectory win-

dow length𝑚 needs to be judiciously chosen. A large𝑚 possibly

benefits the tracking accuracy by giving more fingerprints for DTW

matching, but at the cost of accumulating more DR errors. We de-

sign a mechanism that gradually probes𝑚. Upon initial positioning,

𝑚 is (re)set to𝑚𝑚𝑖𝑛 . We then increase𝑚 in every invocation of �

until it reaches𝑚𝑚𝑎𝑥 .𝑚𝑚𝑖𝑛 and𝑚𝑚𝑎𝑥 are empirically set to 4 and

12, respectively.

2.4 Online Floor Detection

Floor detection is triggered during the initial positioning stage,

as well as when an irregular change of the accelerometer’s Z-axis

reading is detected [55].2 MLoc adopts a simple floor detection algo-

rithm by default: performing a majority vote of the floors associated

with the 5-strongest BLE beacon signals captured over a 5-second

window. We find that this simple method works well in most places

2MLoc does not use barometer for floor change detection, because barometer is only
available on limited smartphones models.

Figure 6: Localization and tracking accuracy.

in a mall with two exceptions. First, most users take elevators or

escalators instead of climbing stairs. We find that detecting a user

entering/leaving an elevator or an escalator is often difficult, leav-

ing floor detection untriggered. To address this issue, instead of

developing sophisticated activity detection algorithms, we choose a

simple design: when the user is approximated to be near an elevator

or an escalator (conservatively determined based on the strongest

BLE beacons),MLoc invokes floor detection periodically (every 2

seconds). Periodical polling incurs additional overheads than the

event-triggered mode. However, given that the floor detection algo-

rithm is very lightweight, we believe our selective polling design

strikes a desired balance between accuracy and system overhead.

The second issue relates to the atrium area where a user may

see strong BLE beacons from multiple floors due to the atrium’s

tall open space. This leads to degraded floor detection accuracy.

To address this issue, when the user is found to be around the

(pre-designated) atrium area, MLoc uses a different floor detection

method based on deep neural networks (DNN). For each mall, we

train a DNN model, which uses perceived BLE RSSIs to predict

a one-hot vector of floors. The simple DNN model consists of 6

autoencoder-based layers for feature extraction [50] and 6 fully

connected layers for classification. Compared to the basic detection

algorithm, DNN can significantly increase the detection accuracy

despite its higher overhead (Figure 11 in §3).

� Guideline 4. Despite the complex floor layouts, there are only

several generic types of challenging areas (e.g., atrium, corridor dead

ends, corridor connectors, and elevators) based on our extensive field

studies. They can be tackled by classical algorithms (e.g., kNN and

PF) enhanced by simple yet strategic customizations (e.g., weight

adjustment and lightweight AI).

2.5 Operational Model

MLoc employs the edge computing paradigm. An edge server is

deployed in each mall. When the user launches the app, MLoc’s

centralized gateway server identifies which mall the user is at; then

the remaining localization and tracking tasks are handed over to

the local edge server. All the computation tasks are performed on

the edge. The encrypted client-edge communication is over the

Internet (in-mall WiFi or cellular).

MLoc’s thin-client approach facilitates cross-platform develop-

ment, but brings a side effect. Poor Internet connectivity in some

malls can delay the client-edge communication, thus increasing

localization errors, as complained by some users and verified by us.

We will add the “offline mode” toMLoc.
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Figure 7: Temporal stability.

3 LARGE-SCALE EVALUATION

This section presents large-scale evaluations via trained testers,

while measurements on real users are described in §4.

EvaluationMethodology.MLoc has been deployed since 9/2018

with improvements being made over the past three years. We have

conducted principled, large-scale evaluations by hiring tens of

trained testers. The evaluation methodology is as follows. The

testers adopt a specially designed testing app (a modified version

of MLoc) and are asked to walk along multiple store-to-store paths

to mimic normal user behaviors. Each path consists of a series of

landmarks (§2.1). When the tester passes a landmark, he/she will

tap a button so the testing app learns the ground truth. Meanwhile,

the testing app runs MLoc’s localization algorithms as described

in §2.

The evaluations (i.e., the testing data collection) were conducted

from 11/2019 to 01/2021 (with some additional benchmarks con-

ducted in 2018), at 35 malls in 7 cities in China: Hangzhou, Shanghai,

Wuxi, Wuhan, Guangzhou, Tianjin, and Shenyang (up to 2200 km

apart). Each building has an average of 5.0 floors, and each floor

has an average area of 49K𝑚2. Recall from §2.1 that the beacons

are only deployed in shared areas of malls (e.g., corridors, atrium,

and rest areas), which account for around 10% of a floor’s area. The

median path length is around 45 meters. The evaluations cover 152K

𝑚2 localization area with a total number of 4.3K paths and a total

walking distance of 215 km. The training data collection consists of

22.3K paths (1,100 km of walking) involving 21K beacons and 244K

landmarks. The ratio between the training and testing data size is

roughly 5:1. The mobile devices used in our evaluations include

Huawei, Xiaomi, Oppo, and iPhone. Unless otherwise mentioned,

the evaluations (i.e., testing) were conducted shortly (1 week to 1

month) after the training data was collected, on a per-mall basis.

By default, the beacons have a broadcast interval of 200ms.

Positioning Accuracy. Figure 6 plots the overall positioning ac-

curacy across all the tested landmarks. The four curves correspond

to the errors in the {initial positioning, tracking} stage using {BLE

only, BLE+GMF}. As expected, initial positioning gives a low accu-

racy (median error 4.1m for BLE and 5.0m for BLE+GMF), which

is significantly improved in the tracking stage (median error 2.4m

for BLE+GMF and 3.5m for BLE).3 Meanwhile, we observe that

for 3% of the landmarks, the location tracking error is higher than

10m. This is caused by various factors such as failed BLE beacons,

fingerprint noises, erroneous floor detection, and low smartphone

scanning frequency. The standard deviation of the median tracking

3Unless otherwise mentioned,MLoc uses BLE for initial positioning and BLE+GMF
for location tracking, according to the design in §2.

Table 1: Beacon failure rate.

Time % Failure

12/19 0.3%

06/20 1.5%

01/21 4.9%

error across the 35 malls is 0.3m (min: 1.9m, max: 3.0m). Smaller

malls tend to have lower errors.

Temporal Stability of Fingerprints. To assess the temporal

stability of fingerprints, we conduct a separate long-term experi-

ment in three malls in Hangzhou. The training data was collected

in 12/2019. Since then, no maintenance such as training data up-

date and beacon replacement was performed. Then we launch two

test campaigns involving the same paths, one in 01/2020, and the

other in 01/2021. As shown in Figure 7, after one year, the median

localization error increases from 2.4m to 4.1m. This is attributed

to two factors: (1) the change of the physical environment such as

store renovations and various events held in atrium areas, and (2)

the failure of BLE beacons, as to be quantified next.

Table 1 shows the ratio of failed BLE beacons (i.e., the fraction

of beacons that stop broadcasting), based on our on-site surveys

conducted in the 12 malls in 7 cities. As shown, over one year, the

failure rate was non-trivial. We find that the beacon failures were

not only due to hardware issues, but also because many beacons fell

off the ceilings. It is thus important to ensure the secure attachment

of the beacons.

� Finding 1. MLoc achieves a median tracking error of 2.4m

(10-th and 90-th percentile: 0.8m and 7.3m), more than adequate for

store-level navigation. After one-year usage without replacing failed

beacons (5%) or updating the training data, the error remains at an

acceptable level (median 4.6m). We do observe a long tail of errors

caused by various factors, many of which are non-algorithmic, such

as beacon failures, poor client capability (Figure 14), and poor Internet

connectivity (§2.5).

BLE vs. GMF Features. Figure 6 shows that compared to BLE

only, further using GMF can improve the tracking accuracy. How-

ever, in the initial positioning stage, BLE+GMF underperforms BLE

only. To better understand the interplay between the BLE and GMF

features, we select 100 landmarks located on a single floor in a mall

in Hangzhou. The landmarks are numbered from 1 to 100 such that

two numerically close IDs imply that the two landmarks are physi-

cally close. Figure 8 plots the heatmaps of normalized fingerprint

differences (in Manhattan distance) across all landmark pairs, for

BLE, GMF, and BLE+GMF features. As shown, BLE features can

easily distinguish two far-apart landmarks, but they are not good

at differentiating nearby locations. In contrast, GMF features are

not sensitive to distance: both nearby and far-apart landmarks may

have different GMF fingerprints. Based on our measurement, the

resolution4 of GMF features is 5.4× better than BLE. Also, GMF

fingerprints can be frequently sampled (every 20ms or shorter) on

smartphones, whereas scanning BLE beacons takes a much longer

4The resolution of a grid 𝑔 is calculated as the minimum physical distance to another
grid 𝑔′ such that ‖𝑓𝑔 − 𝑓𝑔′ ‖ < 10% · ‖𝑓𝑔 ‖ where 𝑓𝑔 and 𝑓𝑔′ are the fingerprints. We

calculate all grids’ resolutions then take their average.
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Figure 8: Heatmaps of pairwise fingerprint differences for (a) BLE, (b) GMF, (c) BLE+GMF.

Figure 9: BBI vs. localization error.

time (Figure 15). Despite these advantages, GMF fingerprints are

noisier (Figure 8(b)) and more temporally unstable than BLE. We

find that, for example, symmetric areas in a mall such as multiple

wings may share similar GMF fingerprints.

� Finding 2. BLE and GMF are complementary. BLE is accurate,

having low resolutions, and slow to scan; GMF is noisy, having high

resolutions, and fast to collect.MLoc thus only uses BLE in the initial

positioning to combat noises, and further uses GMF during the tracking

stage to refine the location as more fingerprint samples accumulate.

BLE Beacon Broadcast Interval (BBI) is a key parameter in

MLoc. A small BBI helps improve the localization accuracy by

allowing more frequent device-side fingerprint collection, but at the

cost of a shorter beacon battery life. In our initial deployment in late

2018, we use a BBI of 500ms. In 2019, we reduce the BBI to 200ms. To

justify this change, Figure 9 compares the localization accuracy of

the two configurations, under best-effort fair comparisons (similar

training-testing intervals and testing paths). As shown, reducing

the BBI slightly improves the median localization error from 3.0m

to 2.6m, but the tail improvement is much more significant: the

90-percentile error decreases from 10.6m to 7.1m. We find a major

reason to be client-specific: smartphones with long BLE scanning

intervals work poorly with long BBIs, as to be shown in Figure 16.

Regarding the other side of the tradeoff, Table 2 shows a beacon’s

expected battery life at different BBIs, based on our in-lab power

modeling. At a 200ms BBI, a beacon can last for 1.75 years, which

is short but still acceptable. Considering the results in Figure 9 and

Table 2, we changed the BBI to 200ms in 2019.

� Finding 3. Increasing the BBI brings small improvements in

most cases, but can significantly improve the accuracy for the long

tail (∼20% cases), benefiting devices with long BLE scanning intervals

(Figure 16). For short BBIs (e.g., <300ms), the battery replacement

overhead is non-trivial.

Figure 10: Beacon spacing vs. localization error.

Table 2: BBI vs. beacon battery life (2400 mAh).

BBI (ms) Bat. Life (yr)

100 0.92

200 1.75

500 4.50

1000 7.75

BLE Beacon Spacing (i.e., the distance from a beacon to its

nearest beacon) also affects the localization accuracy. To illustrate

this, we study two malls, one in Tianjin (denoted as S1) and the

other in Hangzhou (denoted as S2). Both malls have 5 floors, similar

floor layouts (e.g., large atrium), similar floor areas (33.5K𝑚2 for S1

and 30.8K𝑚2 for S2), and the same BBI (200ms). The above factors

foster fair comparisons (in a best-effort manner) between the two

sites.MLoc has been deployed in both malls since 2019.

The key difference between S1 and S2 is their average BLE beacon

spacing: around 14m for S1 and around 18m for S2. Figure 10 plots

their distributions of localization errors. The results indicate that

there is no noticeable difference in terms of the median localization

error (∼0.5m) between S1 and S2. However, similar to Figure 9, a

smaller beacon spacing helps improve the tail accuracy: at 14m

average beacon spacing (S1), the 90-percentile localization error is

6.7m, compared to 10.5m as for 18m average beacon spacing (S2).

Floor Detection. Recall from §2.4 thatMLoc employs two floor

detection algorithms: a majority vote of the top-5 strongest BLE

beacons, and the DNN-based approach. Figure 11 compares their

accuracy for atrium and non-atrium areas (the error bars are across

different malls). We only include the results of the initial positioning

stage, which is more challenging compared to the tracking stage

due to a lack of observed BLE beacons. As shown, in non-atrium

areas, both top-5 and DNN algorithms work well, with a median
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Figure 11: Floor detection accuracy.

Figure 12: Walking distance estimation error.

accuracy of higher than 97%. However, in atrium areas, the accuracy

of the top-5 method drops drastically to 61%, while the DNN-based

approach remains robust, with a median accuracy of 96%. This

justifies our design decision of using DNN-based floor detection in

atrium areas (§2.4).

Despite the seemingly good floor detection results, we are a

bit surprised to see that among the negative feedback from users,

there are much more complaints about incorrect floor detection

than inaccurate localization on the same floor. Users can tolerate

large same-floor localization errors (e.g., up to 20m), but they can

hardly accept any floor detection error, which will lead to a totally

unexpected floor map.

� Finding 4. A lightweight DNN-based floor detection method

(a 12-layer network adopted byMLoc) can yield good accuracy in the

challenging atrium areas. However, customers have an extremely low

tolerance to floor detection errors, compared to their large tolerance

to same-floor localization errors. Future systems should aim at 100%

accuracy for floor detection.

Dead Reckoning (DR). Recall that each path walked by a tester

consists of multiple landmarks with their location ground truth

known. For each segment (i.e., a pair of consecutive landmarks)

𝐴 → 𝐵, we compare |𝐴𝐵 | with the walking distance calculated by

DR, and compare the direction of
−→
𝐴𝐵 with the average heading

calculated by DR. In other words, our DR evaluation is performed

on a per-segment basis, because obtaining the per-footstep ground

truth is difficult.

Figure 12 plots the estimation error of walking distance across all

paths’ segments. We plot the first segment of a path and the remain-

ing segments separately. The latter bears a higher accuracy than

the former, because as the user walks, DR improves the step length

estimation based on the floor plan and the number of footsteps

(§2.3). Overall, the 25th, 50th, and 75th-percentile of the estima-

tion error are 6%, 12%, and 19%, respectively. Figure 13 plots the

Figure 13: Heading estimation error.

Figure 14: Localization error across smartphone brands.

heading estimation error distribution, with the 25th, 50th, and 75th-

percentile being 3.9°, 9.1°, and 16.4°, respectively. The results are

not as impressive as those reported by the research papers [38, 39]

due to noises from multiple sources (imperfect sensors, different

handheld positions of phones, busy malls). Nevertheless, the accu-

racy is adequate for store-to-store navigation, and many errors can

be corrected by particle-filtering (§2.3). We therefore do not pursue

more sophisticated DR approaches.

Impact of Smartphone Brands. Figure 14 plots the localiza-

tion errors for different smartphones (measured in 2021, matching

Figure 7). We observe considerable differences across the devices.

iPhone, which accounts for ∼25% of the total testing devices, owns

the best accuracy of 3.1m (median value). Android devices belong

to a more fragmented ecosystem and thus exhibit diverse perfor-

mance. Popular smartphones such as Huawei and Xiaomi (account

for ∼50% of the devices) bear not only higher errors, but also larger

variations. The cross-device homogeneity is attributed to the de-

vices’ different software (e.g., OS and driver) and hardware (BLE

radio and sensor chips). Vendors such as Huawei are known to

deeply customize Android for energy saving purpose [2, 3]. This

may cause degraded localization accuracy.

We showcase a major root cause of the cross-device accuracy

difference: the Successful Scanning Interval (SSI), defined as the

interval between two consecutive BLE scans each capturing at

least one beacon. As plotted in Figure 15, there are considerable

statistical differences among the SSIs measured on different devices,

and the SSI is largely correlated with localization errors reported

in Figure 14. In extreme cases, a Huawei phone cannot see even a

single beacon for more than 10 seconds. This inevitably leads to

high localization errors. Figure 16 further shows that, as the beacon

broadcast interval (BBI) increases, the SSI and its variation increase

correspondingly, in particular for the Huawei phones with throttled

scanning activities. This explains our findings in Figure 9 where
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Figure 15: SSI (Successful Scanning Interval) across brands.

Figure 16: BBI vs. SSI across smartphone brands.

reducing the BBI helps improve the tail localization errors, which

indeed mostly occur on high-SSI phones as verified by us.

� Finding 5. Different smartphone brands/models exhibit con-

siderable differences in localization accuracy. Some vendors throttle

the BLE scanning frequency to save energy. This may severely impact

the performance of localization/tracking applications. Smartphone

OS vendors should consider making the scanning frequency (among a

wide range) configurable.

The Energy Consumption ofMLoc is measured by controlled

experiments. We examine the battery drain while runningMLoc.

We use several fully charged iPhones and Android phones to per-

form continuous store-to-store navigation for 1 hour, with WiFi,

BLE, screen turned on and the display brightness level set to 50%.

We use the Medium Power mode in Table 3 (described next) for the

experiment. In 1 hour, the battery life drops by 7% to 11%, and the

traffic usage is less than 12 MB. In contrast, keeping the phones idle

for one hour with the same screen brightness consumes 4% to 6%

of the battery energy. The results indicate low resource footprints

of MLoc.

In addition to the above coarse-grained measurement, we also

perform a closer examination of MLoc’s power consumption by

logging the battery usage events [1] of an OPPO R15 smartphone

under three configurations of MLoc: low power, medium power

(the default configuration), and high power. As shown in Table 3,

IMU and GMF sensors are enabled in all three modes as they incur

very low power consumption. BLE sensing is disabled in the low

power mode while enabled in the medium and high power mode.

The localization frequency increases from 1Hz to 10Hz in the high

power mode. The comparison baseline corresponds to the scenario

where the screen (at 50% display brightness level), Bluetooth, WiFi,

and GPS are turned on, but MLoc is not running. The average

baseline power consumption on OPPO R15 is 1032mW. As shown

in the rightmost column in Table 3, compared to the baseline, the

average power consumption increases by 5%, 12%, and 16%, in the

Figure 17: Distribution of floor changes (0 = same floor).

Table 3: Power usage ofMLoc on OPPO R15 smartphone.

Power IMU+GMF BLE Localization Avg. Device

Mode Sensing Sensing Frequency Power

Low Power 50 Hz Off 1 Hz +5%

Med. Power 50 Hz 1 Hz 1 Hz +12%

High Power 50 Hz 1 Hz 10 Hz +16%

three power modes respectively. The above results confirm that

MLoc’s incurred energy overhead is acceptable, at least for its low

and medium power configurations.

4 USER BEHAVIORS

This section analyzes the user behaviors ofMLoc’s customers in the

real world. Note that this is different from the evaluations using data

collected by trained testers in §3. We collected MLoc’s customer

data at 12 malls in 7 cities (Hangzhou, Shanghai, Wuxi, Wuhan,

Guangzhou, Tianjin, and Shenyang) from 04/2020 to 04/2021. The

data includes 472K unique users (48% are female). The user devices

are dominated by iPhone (46%), Huawei (31%), Xiaomi (19%), and

Oppo (3%), but we do see a long tail of 8 other smartphone brands.

MLoc is offered to the end customers as both a standalone lo-

calization app and a mini-program of WeChat (a multi-purpose

instant messaging, video/audio chat, social media, and payment

app). It is also released as a library that is embedded into shopping

malls’ mobile apps. We find that more than 95% of the customers

use the mini-program or shopping malls’ mobile apps withMLoc

embedded. This is in part because of the advertisements (both on-

site and online) conducted by the malls to promote the two types

of apps. The advertisements are usually effective. For example, in

our one-month study of usingMLoc as a marketing platform (de-

scribed shortly), online advertisement attracted 46% of new users

(as tracked by the scanned QR codes).

While we are unable to evaluate the localization accuracy due

to a lack of ground truth from the customers’ data,MLoc records

customers’ last tracked locations in their navigations. Using this

information, we find that 95% of the navigations ended at locations

that are 20m within the destination storefront. This indicates the

overall effectiveness ofMLoc.

The MLoc app also logs basic information regarding the app

usage. Figure 17 plots the distribution of floor changes from the

beginning to the end of the navigation (or user closing our app).

We find that 27% of the navigations involve floor changes. 31%

of the floor changes are going downstairs – higher than what we
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Figure 18: The usage of MLoc.

expected. Figure 18 plots the distributions of duration and users’

walking distance in each navigation, whose median values are 73

seconds and 81 footsteps (about 50m), respectively (25-th percentile:

44 seconds and 35 footsteps; 75-th percentile: 108 seconds and 189

footsteps). Note that our measured duration and footsteps are the

lower bounds of the actual walking time/distance, because a user

may close our app early during navigation. Figure 19 plots the

distribution of the number of daily navigation sessions across all

(user, day) whenMLoc is used at least once. In 28% of the cases, a

customer uses MLoc more than once within a day.

� Finding 6. WhileMLoc can help many users find their desti-

nations quickly, in at least 20% of the navigations, users spend more

than 2 minutes usingMLoc or walk for more than 230 steps (∼150m).

Customers useMLoc for same-floor, upstairs, and downstairs naviga-

tions.

We also investigate the destination stores users go to. The lo-

cation types ordered by popularity include food and drink (53%),

clothing (15%), in-mall playground (5%), electronics (4%), mall exit

& subway entrance (3%), and others (20%). Through our informal

chat with customers during field studies, we find that people need

MLoc not only because today’s malls are large, but also due to many

other reasons: signs being too small to recognize in distance; highly

symmetric floor layout confusing users (they may also confuse lo-

calization algorithms); and young people who get used to (outdoor)

navigation apps being inexperienced in reading maps, etc.

MLoc as a Marketing Platform. Indoor localization systems

are promising marketing platforms. To demonstrate this, from

11/2020 to 12/2020, we organized a sales event by working with a

large mall in Wuxi (in eastern China). In this event, customers can

retrieve from the MLoc app e-coupons that offer discounts in tens

of the stores in the mall. The e-coupons are automatically pushed

to the user when he/she is physically near the store (i.e., when the

store shows up on the in-app navigation UI). Overall, we observe

high engagement and conversion rate, as reported below.

During the one-month event, MLoc recorded about 11K naviga-

tion sessions from 7K customers. Among them, 73% of the naviga-

tion sessions from the 3K participating customers (PCs) involve at

least one coupon retrieval. 56% of the PCs are in their 30s or older.

We also track the origin of the PCs. 43% of the PCs were existing

MLoc users; 26% learned this promotion event through online ads;

19% were attracted by on-site ads so they scanned the QR code and

installedMLoc; 10% found out about the event from social media;

and 2% learned it from other sources.

Figure 19: Distribution of the number of daily navigation

sessions per user.

It is encouraging to see that within the PCs (who have retrieved

at least one coupon), 22% of them actually used the coupon(s) in

stores. On average, each PC retrieved 2.3 coupons and used 1.1

coupons. Also note that the coupons have a limited supply. 87%

of the prepared coupons were retrieved by the PCs. Among the

retrieved coupons, 41% of them were used in stores. The above

results indicate the overall success of this sales event.

� Finding 7. Localization systems and their served malls can

mutually benefit each other: MLoc gains many new users through

this sales event (57% of the PCs were new); meanwhile, the event

achieved a conversion rate of 22%, significantly higher than typical

conversion rates for pay-per-click (PPC) online advertising (2% to

3% [5]).

5 RELATEDWORK AND CONCLUSION

Commercial Indoor Localization Systems. There are several

news and blog articles [8, 31, 32, 44, 45, 47] on commercial indoor

localization systems deployed in museums, airports, railway sta-

tions, etc., using either BLE or WiFi as fingerprints. None of them

offered detailed insights or experiences as we did. Their deployment

scales were also smaller.

Prior Deployment Experiences. A recent study [15] reported

a large-scale deployment of a BLE beacon system for goods delivery.

It detects arrivals and departures of couriers at merchants, thus oper-

ating at a much coarser granularity thanMLoc from the localization

perspective. Some other works also conducted real-world deploy-

ment of localization systems [19, 33, 61], albeit at much smaller

scales. A prior study [34] describes the results and lessons learned

from the 2014 Microsoft Indoor Localization Competition; the au-

thors compared indoor localization solutions from 22 teams around

the world. We take into account their experiences when developing

MLoc. More recently, Microsoft sponsored and co-organized an-

other indoor localization competition, and released a large dataset

(with ground truth) used by the participating teams [4]. To our

knowledge, there is no detailed report of the competition or any

characterization study of the dataset. In our future work, we plan

to evaluate MLoc on their datasets and use the results to improve

our localization algorithms.

Indoor Localization and Sensing. Researchers have devel-

oped numerous techniques and models for indoor localization, such

as fingerprinting [7, 13, 20, 22, 28, 41, 46, 54], RSSI propagation

models [7, 10, 11, 21, 48], wireless models [6, 24, 35, 49, 57, 58]

such as angel of arrival (AoA) [57] and Time of flight (ToF) [35, 49],

dead reckoning [40], crowdsourcing [56], sensor fusion [18], and
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image or light based localization [17, 26, 29, 30]. Many other studies

develop sensing techniques [9, 51, 52] for, e.g., identifying human

behaviors [52].MLoc leverages robust, time-tested algorithms from

the literature, and customizes them for in-mall localization.

To conclude, our experiences suggest that high localization ac-

curacy is only one of the multiple objectives ofMLoc, which needs

to carefully balance the tradeoffs among accuracy, human labor,

infrastructure complexity, usability, and maintenance overhead, to

name a few. Beacons’ limited battery life may also pose an obsta-

cle towards their large-scale deployment and maintenance in the

wild. We hope our insights can boost future efforts on transforming

the two-decade research on indoor localization into commercial

products.
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